
AN EXPLICIT EXAMPLE OF KOSZUL DUALITY

LEE COHN

Abstract. The aim of this note is provide an explicit example of Koszul duality between

augmented commutative differential graded algebras and L∞-algebras. We analyze the

formal neighborhood of a distinguished point in the derived zero locus of a function

f : A1 → A1. We show this data can be expressed in two Koszul dual ways: as a complete

commutative differential graded algebra (cdga) of functions on this formal neighborhood

and as a L∞-algebra structure on the shifted tangent space at the distinguished point.
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1. Functions on a Derived Zero Locus

Consider A1 = Spec(k[x]) where k is a field of characteristic 0. Given a map of

schemes f : A1 → A1, we can consider the derived zero locus of f

f−1(0) := A1
h
×
A1

pt .

Here the derived intersection is formed by f : A1 → A1 and the inclusion of the

origin pt→ A1.

The commutative differential graded algebra (cdga) of functions on f−1(0), de-

noted Of−1(0), is given by
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Of−1(0) ' O
(A1

h
×
A1

pt)

' OA1

L
⊗
OA1
Opt

' k[x]
L
⊗
k[x]

k

' k[x] ⊗
k[x]

k[x, y] with deg(x) = 0,deg(y) = −1, dy = x

' k[x, y] with deg(x) = 0,deg(y) = −1, dy = f(x).

Notice that we use cohomological grading conventions. The last algebra in this

chain of weak equivalences will be the main focus of this note.

Definition 1.1. Functions on the derived zero locus of f is

Of−1(0) ' k[x, y] with deg(x) = 0,deg(y) = −1, dy = f(x).

We will now assume without loss of generality that f(0) = 0 or equivalently

0 ∈ f−1(0). This distinguished point gives an augmentation of the derived zero locus

Of−1(0) → k. We wish to complete the derived zero locus at this distinguished point.

We do this by specifying the complete differential graded commutative algebra of

functions on such a completed space.

Definition 1.2. The commutative differential graded algebra of functions on f−1(0)

completed at 0 ∈ A1 is k[[x]][y] with deg(x) = 0, deg(y) = −1, and

dy = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .

The purpose of this note is to show how to recover this completed space from the

data of an L∞-algebra.

2. Cotangent and Tanget Complex

We now wish to compute to cotangent complex of Of−1(0) and the derived cotan-

gent space of Of−1(0) at the point 0 ∈ A1. There are many beautiful ways to think

abstractly about the cotangent complex functor and how it relates to the stabiliza-

tion of a homotopical category differential graded commutative algebras. However,

in these notes we will focus on a computation model for the cotangent complex.

Definition 2.1. Let A be a cdga, then the A-module of Kahler differentials on A

is ΩA/k := FA/I where
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• FA :=
⊕
AddR x, where x ∈ A is a homogeneous element and ddR x is new

variable associated to x of the same degree. The differential on FA is given

by

d(addRx) := daddR x+ (−1)āaddR(dx).

• I ⊂ FA is the ideal generated by the equations

ddR(x+y) = ddR x+ddR y, ddR(xy) = y ddR x+(−1)x̄ȳx ddR y, ddR(b) = 0 for b ∈ k.

The cotangent complex of a cdga A is a derived version of the A-module of Kahler

differentials defined above. What do mean by the word “derived”? We mean that we

replace the cdga A by another cdga R quasi-isomorphic A, where R is constructed

specifically to have certain properties. The properties are chosen so that the functor

of constructing Kahler differentials preserves quasi-isomorphisms between all cdgas

with these properties. The necessity for finding a replacement with these properties

follows from the existence of two quasi-isomorphic cdgas whose module of Kahler

differentials are not quasi-isomorphic. It is an exercise to find two such algebras. In

summary, the functor of forming the module of Kahler differentials does not preserve

quasi-isomorphisms in general.

The type of resolution we seek is called a semi-free resolution of a cdga A.

Definition 2.2. A cdga (R, d) is called semi-free if

• The underlying graded algebra R# is a polynomial algebra.

• There is an exhaustive filtration 0 = F 0 ⊆ F 1 ⊆ . . . ⊆ R with d(Fn) ⊆ Fn−1.

Again, the functor of forming Kahler differentials preserves quasi-isomorphisms

between two semi-free cdgas.

Theorem 2.3. For every cdga A, there exist a semi-free cdga R with a quasi-

ismorphism R→ A.

We are now in position to define the cotangent complex.

Definition 2.4. The cotangent complex of a cdga A is the A-module

LA := ΩR/k ⊗R A

where R → A is a semi-free resolution of A. Furthermore, given an augmentation

A→ k, we can define the derived cotangent space at the point Spec(k)→ Spec(A)

by

k ⊗A LA.

Definition 2.5. The tangent complex of a cdga A is the A-module

L∨A
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where we take the dual in the category of (dg) A-modules. Similarly, we can define

the derived tangent space at the point Spec(k)→ Spec(A) by

T := (k ⊗A LA)∨

where we take the dual in the category of (dg) k-modules.

We now work through all of the definitions above in our example where the cdga

A = k[x, y] with differential dy = f(x).

We are lucky! This algebra is already semi-free. The filtration 0 ⊂ k[x] ⊂ k[x, y]

is indeed exhaustive and since dx = 0 and dy = f(x), the differential satisfies the

required property with respect to this filtration. Thus, to compute the cotangent

complex we need only compute the module of Kahler differentials. Using the nota-

tion in the definition for Kahler differentials we have ΩA/k = AddR x⊕AddR y with

differential d(ddR y) = ∂f
∂x ddR x. So we have

Proposition 2.6. The cotangent complex of A = Of−1(0) is AddR x⊕AddR y with

differential d(ddR y) = ∂f
∂x ddR x. The cotangent space of A = Of−1(0) at the point

0 ∈ A1 is k ddR x⊕ k ddR y with differential d(ddR y) = f ′(0) ddR x.

Notation 2.7. In the sequel we will refer to the cotangent space of A = Of−1(0) at

the point 0 ∈ A1 as the dg vector space k ⊕ k[1]. The first summand corresponds

to k ddR x and the second to k ddR y. Recall the notation k[1] means place the

1-dimension vector space k ddR y in cohomological degree −1.

Taking the dual of k ⊕ k[1] we get:

Proposition 2.8. The derived tangent space of A = Of−1(0) at the point 0 ∈ A1 is

T ' k ⊕ k[−1].

The shifted derived tangent space is

T [−1] ' k[−1]⊕ k[−2].

We want to put an L∞-algebra structure on the shifted derived tangent space,

T [−1], but first we must review the definition of an L∞-algebra.

3. The definition of an L∞-Algebra

An L∞-algebra is a homotopical version of a Lie Algebra. Instead of a having

bracket that satisfies the Jacobi identity, we only ask the Jacobi identity hold up to

homotopy. The precise definition is as follows.

Definition 3.1. An L∞-algebra is a graded vector space g with a sequence of graded

antisymmetric k-brackets [−,−, . . . ,−] =: lk(−,−, . . . ,−) for every k > 0. These
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k-brackets are maps lk : ∧k g[k − 2] → g of degree 0. The k-brackets are asked to

satisfy the higher Jacobi relations
n∑
i=1

(−1)k
∑

i1<...<ik; j1<...jn−k
{i1,...ik}∪{j1,...jn−k}={1,...,n}

(−1)ε[[xi1 , . . . , xik ], xj1 , . . . , xjn−k
] = 0

Here the sign (−1)ε equals the product of the sign (−1)π associated to the permu-

tation

π =

(
1 . . . k k + 1 . . . n

i1 . . . ik j1 . . . jn−k

)
with the sign associated by the Koszul sign convention to the action of π on the

elements (x1, . . . , xn) of g.

Remark 3.2. Let’s unpack the definition above a little bit.

• When n = 1, we have a map l1 : g[−1] → g and the higher Jacobi relation

gives (l1)2 = 0. We denote ∂ := l1.

• When n = 2, we have a map [−,−] : ∧2 g→ g and the higher Jacobi relation

gives

−[∂x1, x2]− (−1)x̄1x̄2+1[∂x2, x1] + ∂[x1, x2] = 0.

or equivalently

∂[x1, x2] = [∂x1, x2] + (−1)x̄1 [x1, ∂x2].

This says that ∂ is a derivation for the bracket [−,−].

• When n = 3, we have a map [−,−,−] : ∧3 g[1] → g and the higher Jacobi

relation gives

−[∂x1, x2, x3]− (−1)x̄1x̄2+1[∂x2, x1, x3]− (−1)x̄3(x̄1+x̄2)+2[∂x3, x1, x2]

+[[x1, x2], x3] + (−1)x̄1(x̄2+x̄3)+2[[x2, x3], x1] + (−1)x̄2x̄3+1[[x1, x3], x2]

−∂[x1, x2, x3] = 0

or equivalently

[[x1, x2], x3] + (−1)x̄1(x̄2+x̄3)[[x2, x3], x1] + (−1)x̄2x̄1+1[[x1, x3], x2] =

∂[x1, x2, x3] + [∂x1, x2, x3] + (−1)x̄1x̄2+1[∂x2, x1, x3] + (−1)x̄3(x̄1+x̄2)[∂x3, x1, x2]

which reduces to

[[x1, x2], x3] + (−1)x̄1(x̄2+x̄3)[[x2, x3], x1] + (−1)x̄3(x̄1+x̄2)[[x3, x1], x2] =

∂[x1, x2, x3] + [∂x1, x2, x3] + (−1)x̄1 [x1, ∂x2, x3] + (−1)x̄1+x̄2 [x1, x2, ∂x3].

Thus, if the 3-bracket l3 = 0, then we recover the usual graded Jacobi

identity. If in addition, all k-brackets for k ≥ 3 are trivial, then the data of

an L∞-algebra reduces to the data of a dg Lie algebra.
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Remark 3.3. If you like operads and model categories, then you know there is

a model category of operads. In this language, the L∞ operad is a cofibrant re-

placement of the Lie operad in the model category of operads. More generally,

the “∞”-version of any operad is formed by taking its cofibrant replacement in the

model category of operads.

The following is an equivalent definition of an L∞-algebra.

Definition 3.4. An L∞-algebra is a graded vector space g with a degree 1 derivation

d : Ŝym(g∨[−1])→ Ŝym(g∨[−1])

satisfying

• d2 = 0.

• d makes Ŝym(g∨[−1]) into a cdga over the field k.

We will call the cdga Ŝym(g∨[−1]) the Chevalley-Eilenberg cochain complex of

the L∞-algebra g. The cohomology with respect to the differential d is called the

Chevalley-Eilenberg cohomology of the L∞-algebra g.

Remark 3.5. Starting with the data (Ŝym(g∨[−1]), d), we can recover the antisym-

metric n-brackets on g. Namely, since d is a derivation, it is completely determined

by a linear map d : g∨[−1]→ Ŝym(g∨[−1]). Decomposing the target space we get a

sequence of maps dk : g∨[−1] → Symk(g∨[−1]). If we take the dual of each map in

this sequence, we get another sequence of maps Symk(g∨[−1])∨ → (g∨[−1])∨. This

is equivalent to a sequence of maps of degree 0 maps (∧ g)k[k − 2] → g, which are

k-brackets on g used in the first definition of an L∞-algebra. The higher Jacobi

relations are encoded by the surprisingly simple formula d2 = 0.

Remark 3.6. By Koszul duality, we mean the process of moving between an L∞-

algebra and a cdga.

4. L∞-Structure on the Shifted Tangent Space

We now discuss the L∞-structure on the shifted tangent space

g := k[−1]⊕ k[−2]

at the point 0 in the derived zero locus of f : A1 → A1. That is, we must specify a

sequence of maps lk : ∧k g[k − 2] → g of degree 0. Let us examine the structure of

these maps in this example.

• If k = 0, we have a map l0 : k[−2]→ g. That is, a map

k[−2]→ k[−1]⊕ k[−2].

• If k = 1, we have a map l1 : g[−1]→ g. That is, a map

k[−2]⊕ k[−3]→ k[−1]⊕ k[−2].
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• If k = 2, we have a map l2 : ∧2 g→ g. That is, a map

(k[−1]⊕ k[−2]) ∧ (k[−1]⊕ k[−2])→ k[−1]⊕ k[−2].

• If k = n, we have a map ln : ∧n g[n− 2]→ g.

The main observation is that since every ln is a map of degree 0, it is completely

determined by a map k[−2] → k[−2]. Furthermore, a map between 1-dimensional

vector spaces is equivalent to the data of a number.

Now consider the Chevalley-Eilenberg cochain complex on g = k[−1]⊕k[−2]. Re-

call this is (Ŝym(g∨[−1]), d) where d : Ŝym(g∨[−1])→ Ŝym(g∨[−1]) is a derivation of

degree 1. Furthermore, we can decompose d into pieces dk : g∨[−1]→ Symk(g∨[−1])

where, by definition, the pieces dn are dual to the maps ln described above. Thus,

the pieces dk are given by numbers.

Now, if g = k[−1]⊕ k[−2] then g∨[−1] = k ⊕ k[1]. Thus, the maps

dk : g∨[−1]→ Symk(g∨[−1])

take the form

dk : k ⊕ k[1]→ Symk(k ⊕ k[1]).

where the first and second summands of k ⊕ k[1] correspond to variables x and y.

Since d is derivation of degree 1, the map dk is still of degree 1. Hence

dk(y) = akx
k

for some number ak in the field k. Thus, our Chevalley-Eilenberg complex on the

shifted cotangent space is

Ŝym(k ⊕ k[1]) ' k[[x]][y]

with

dy = a0 + a1x+ a2x
2 + a3x

3 + . . .

Choosing the following values for the numbers {a0, a1, a2, . . .}
• a0 = f(0)

• a1 = f ′(0)

• a2 = f ′′(0)/2!

• an = f (n)(0)/n!

equips g = k[−1]⊕ k[−2] with the structure of an L∞-algebra.

We have proven that

Proposition 4.1. The Chevalley-Eilenberg complex of the L∞-algebra g (the shifted

tangent space at 0 of the derived zero locus of f : A1 → A1) is equivalent to the cdga

of functions on derived zero locus of f completed at the point 0. In other words,

there is an equivalence of cdgas

(Ŝym(g∨[−1]), d) ' k[[x]][y]
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with deg(x) = 0, deg(y) = −1, and dy = f(0) + f ′(0)x+ f ′′(0)
2! x2 + . . .

Thus, we have recovered the formal neighborhood the distinguished point inside

of the derived zero locus as desired.
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