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1. A 2-Dimensional Reduction of Chern-Simons

Quantum Chern-Simons theory is a (3,2,1)-dimensional TFT on ori-

ented manifolds with a p1-structure with values in the 2-category of

C-linear categories,

ZC : Bord
(w1,p1)
〈3,2,1〉 → CatC,

with

ZC(S
1) ' C,

a modular tensor category. That is, a ribbon fusion category with a

non-degenerate S-matrix. In particular, C is linear (over C), braided,

has duals, and is semisimple with finitely many simple objects.

Remark 1.1. A p1-structure on a manifold M , is the data of a null

homotopy of the composition

M → BO → K(Z, 4),

where M → BO classifies the (stable) tangent bundle of M , and BO →
K(Z, 4) is the first Pontryagin class.
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Remark 1.2. Philosophically, a modular tensor category is a categori-

fication of a commutative Frobenius algebra. If C is a modular tensor

category, then K0(C) inherits the structure of a commutative ring over

Z from the braiding on C, and thus, K0(C) ⊗Z C is a commutative

algebra. The trace map K0(C) → C sends the equivalence class V

to dim(V ) := Trace(IdV ), the latter of which is defined in any ribbon

tensor category.

Definition 1.3. The Verlinde ring is K0(C), and the Verlinde Algebra

of C is the algebra K0(C)⊗Z C. The former is a Frobenius ring while

the latter is a Frobenius algebra.

Two main examples of interest are the following:

Example 1.4. Let G be a finite group, then VectG(G), the category

of G-equivariant vector bundles on G, is a modular tensor category.

The monoidal structure is defined as follows. Let V be an equivariant

vector bundle on G, that is a collection of vector spaces Vx, x ∈ G,

and isomorphisms Vx ' Vgxg−1 satisfying a cocycle condition. Given

two equivariant vector bundles V and W , we define a new equivariant

vector bundle V ⊗cW using convolution:

(V ⊗cW )x := ⊕
x1x2=x

Vx1 ⊗Wx2 .

Notice that,

(V ⊗cW )gxg−1 := ⊕
x1x2=gxg−1

Vx1 ⊗Wx2

' ⊕
g−1x1x2g=x

Vx1 ⊗Wx2

' ⊕
g−1x1gg−1x2g=x

Vx1 ⊗Wx2

' ⊕
g−1x1gg−1x2g=x

Vg−1x1g ⊗Wg−1x2g

' ⊕
y1y2=x

Vy1 ⊗Wy2

' (V ⊗cW )x
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So that V ⊗cW is indeed another equivariant vector bundle. One can

show, K0(C) = KG(G) is a Frobenius algebra, multiplication arises

from the pushforward of group multiplication.

Example 1.5. There is a twisted version of the example above. Let

α ∈ H4(BG,Z)→ H3
G(G,Z) ' H2

G(G,U(1)) ' H1
G(G, {Line Bundles})

where the first arrow in the sequence sends a map BG → B4Z to a

map G/G → B2C× × B3C× → B2C×, by taking free loops. That is,

we get a C×-gerbe on G/G. For the remaining arrows, recall that

Z ' K(Z, 0), U(1) ' K(Z, 1), CP∞ ' K(Z, 2).

From the data of α, one can construct hermitian lines Lx,y with isomor-

phisms Lyxy−1,z ⊗Lx,y → Lx,zy, where x, y, z ∈ G. Then VectαG(G), the

category of α-twisted equivariant vector bundles on G, is a modular

tensor category with a monoidal structure given by α-twisted convolu-

tion. An object in this category is a vector bundle V over G together

with isomorphisms Lx,y ⊗ Vx → Vyxy−1 , where the Lx,y are hermitian

lines constructed using the data of α. These are equivariant vector

bundles twisted by a gerbe.

Definition 1.6. Now, let G be simply connected, compact, simple Lie

group and let

1→ C× → L̃G→ LG→ 1

be the universal central extension corresponding to a generator of

H2(LG,C×).

Remark 1.7. A projective representation of LG is equivalent to a

honest representation of L̃G, where we require the center C× to act by

scalar multiplication.

Definition 1.8. A positive energy representation of LG at level α

is a representation of L̃G, V, extending to the semi-direct product

L̃GoRot(S1), such that Rot(S1) acts by non-negative characters only.

That is, Rot(S1) induces a decomposition of vector spaces

V = ⊕
n≥0

V (n)
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where V (n) = {v ∈ V |Rθv = einθv} and Rθ ∈ Rot(S1).

Remark 1.9. If V is irreducible, the kernel of the central extension

acts by a single scalar α (Schur’s Lemma), called the level of the rep-

resentation. The level classifies the central extension of LG and is a

class α ∈ H4(BG,Z) ' Z. Furthermore, V is determined by its level

and its lowest nonzero energy eigenspace, which itself is an irreducible

representation of G. We will use this fact in the sequel.

Proposition 1.10. Given G and an element α ∈ H4(BG,Z) ' Z, the

category of positive energy representations of the loop group LG at level

α, Repα(LG), is a modular tensor category.

Definition 1.11. Let V erα(G) be the Verlinde ring of the modular

tensor category Repα(LG), and let V erα(G)⊗Z C be its Verlinde alge-

bra.

In this talk, we will consider a 2-dimensional reduction of Chern-

Simons theory. This is an oriented 2-dimensional TFT Z ′C defined by

Z ′C(M) := ZC(S
1 ×M).

In particular,

Z ′C(pt) := ZC(S
1 × pt) ' C.

Z ′C(S
1) ' HH0(C).

Remark 1.12. We consider an oriented 2-dimensional TFT because

the map defining the 2-dimensional reduction

Bord
(w1,p1)
2

S1×− // Bordw1,p1
〈3,2,1〉

// CatC

factors through the oriented bordism category Bordw1
2 .

We claim there is a commutative diagram

Bord
(w1,p1)
〈3,2,1〉

// CatC

Bord
(w1,p1)
2

S1×−

OO

// Bordw1
2 .

OO

Goal 1.13. Show the Verlinde Algebra K0(C) ⊗Z C is the Frobenius

algebra defining the (2,1)-dimensional reduction Z ′C.
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Thus, we must show the following

Proposition 1.14. Let C be a modular tensor category, then

K0(C)⊗Z C ' HH0(C).

Proof. There is an isomorphism K0(C) ⊗Z C with the algebra of C-

valued functions on the finite set I of isomorphism classes of simple

objects. This uses the non-degeneracy of the S-matrix [Bakalov-Kirillov

3.1.12]. This algebra can be interpreted as End(IdC) by Schur’s Lemma.

Furthermore, End(IdC) ' HH0(C), using the semisimplicity of the cat-

egory C. �

2. The example G = SU(2) and α = k

Start with the complexified representation ringRep(SU(2)) = C[t, t−1]Σ2 .

That is, the irreducible representations are Vn with dim(Vn) = n + 1.

This representation corresponds to the polynomial tn+ tn−2 + . . .+ t−n.

Multiplication of polynomials gives the formula:

Vn ⊗ Vm = Vm+n ⊕ Vm+n−2 ⊕ . . .⊕ V|m−n|.

The Verlinda algebra, V erk(SU(2))⊗ZC, is a quotient of Rep(SU(2))

by

Vk+1 = 0

and the relation

Vn ⊕ V2k+2−n = 0.

Example 2.1. Take k = 5, then in Rep(SU(2)). Draw a picture with

a mirror at 6!

V3 ⊗ V4 = V7 ⊕ V5 ⊕ V3 ⊕ V1

and in the quotient V er5(SU(2)) this becomes

V3 ⊗ V4 = −V5 ⊕ V5 ⊕ V3 ⊕ V1 = V3 ⊕ V1.

If k = 0 we have

V er0(SU(2))⊗Z C = C[x]/x.

If k = 1 we have

V er1(SU(2))⊗Z C = C[x]/(x2 − 1).
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One can show:

V erk−1(SU(2))⊗Z C = C[x]/(
k∏

m=1

(x− 2 cos(
m

2k + 2
2π))).

Remark 2.2. Again, positive energy representations of level k are

determined by their lowest energy eigenstate which itself is an irre-

ducible representation of the group, in this case SU(2). The first equa-

tion Vk+1 = 0 corresponds to the fact that the antidominant weights

controlling irreducible representations live in the positive Weyl alcove

[Segal-Pressley 9.3.5].

Remark 2.3. The unit of the algebra is called the Vacuum represen-

tation of level k. It is the positive energy representation of level k

that is induced from a lowest energy eigenspace being a lowest weight

representation.

Remark 2.4. The “fusion” algebra structure has origins in conformal

field theory. Let Vp, Vq be irreducible positive energy representations

of G = SU(2). Then,

Vp · Vq =
∑
Vr

NVr
Vp,Vq

Vr,

Here, NVr
Vp,Vq

is the dimension of the vector space

(Vp ⊗ Vq ⊗ V ∗r )Hol(P1−{p1,p2,p3},GC).

This is (dual to) the space of conformal blocks. One can show this mul-

tiplication is associative and gives rise to the Verlinde algebra. There

is a subtle point here. Let Ĝ be the canonical central extension of

Hol(C×, GC)×3 that extends each of the individual universal central

extensions. Then, one needs to show the image of

Hol(P1 − {p1, p2, p3}, GC)→ Ĝ

splits to actually have a well defined action of Hol(P1−{p1, p2, p3}, GC)

on Vp ⊗ Vq ⊗ V ∗r . This is established by using the residue formula.

Furthermore, one can show that:

NVr
Vp,Vq

=

{
1 if r − |p− q| is even and |p− q| ≤ r ≤ min(p+ q, 2k − p− q)
0 otherwise
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This computation is in Verlinde’s original paper.

3. Twistings and Orientations

To give a complex vector bundle on M is to give vector bundles Vi

on open sets Ui of a covering and isomorphisms

λij : Vi → Vj

which satisfy a cocycle condition on intersections. In complex K-theory

this is expressed by the Mayer-Vietoris sequence. In forming a twisted

vector bundle V, one introduces a complex line bundle Lij on Ui ∩ Uj
together with isomorphisms:

λij : Lij ⊗ Vi → Vj.

The Lij must come equipped with isomorphisms

Ljk ⊗ Lij → Lik

on triple intersections and satisfy a cocycle condition on quadruple in-

tersections. Thus, we can form a twisted version of K(M) given an ele-

ment τ ∈ H1(M, {Line Bundles}) ' H3(M,Z). This group parametrizes

complex C×-gerbes.

Remark 3.1. There is second way to think about this. Recall that F
(the space of Fredholm operators of a complex Hilbert space H) is a

representing space for K-theory. That is, K(X) = π0Γ(X × F → X).

If U = U(H) is the unitary group and P → X is a principal PU -

bundle, one can form the associated bundle ξ = P ×PU F → X with

fiber F . Define P -twisted K-theory to be

K(X)P = π0Γ(ξ → X).

Thus one twists K-theory by PU -bundles over X, and isomorphism

classes of such bundles are given by [X,BPU ]. Since BPU is a model

for K(Z, 3), we arrive at [X,BPU ] ' H3(X,Z).

Remark 3.2. A third way to think about this from an ∞-categorical

perspective is in Ando-Blumberg-Gepner’s “Twists ofK-Theory.” They
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discuss a map K(Z, 3)
T−→ BGL1(K) ' |LineK | and form the compo-

sition

M
τ−→ K(Z, 3)

T−→ BGL1(K) ' |LineK |.

The corresponding Thom spectrum is

MTτ := colim(SingM
Tτ−→ LineK −→ ModK).

Finally, twisted K-theory is given by

Kn
τ (M) := π0(ModK(MTτ ,ΣnK)).

Now, further allowing for the Lij defined before the remarks to have

a degree modulo 2 and be (±) line bundles, we arrive at elements

τ ∈ H0(M,Z/2)×H1(M,Z/2)×H3(M,Z).

Remark 3.3. That is, twistings ofK-theory on a spaceM are classified

up to isomorphism by the set H0(M,Z/2)×H1(M,Z/2)×H3(M,Z).

Example 3.4. A real vector bundle V →M determines a twisting τV

in complex K-theory, whose equivalence class is:

[τV ] = (rankV,w1(V ),W3(V )) ∈ H0(M,Z/2)×H1(M,Z/2)×H3(M,Z).

More precisely, a real vector bundle V has a second Stiefel-Whitney

class w2(V ) ∈ H2(M,Z/2), and gives a real R×-gerbe. The third in-

tegral Stiefel-Whitney class W3(V ) is the image of w2(V ) under the

Bockstein H2(M,Z/2)→ H3(M,Z), and corresponds to complexifica-

tion.

One can further assign a twisting to any virtual real vector bundle

by setting τ−V := −τV .

Remark 3.5. Let τ be a twisting on a manifold N , then to a proper

map p : M → N one can define a pushforward map

p∗ : K(τp+p∗τ)+•(M)→ Kτ+•(N).

where τp = τM − p∗τN is the twisting associated to the relative tangent

bundle.
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Definition 3.6. A KU -orientation of V is an equivalence τV ' τrankV
or equivalently, a trivialization of the twisting attached to the reduced

bundle (V − rankV ). Equivalently, this is a spinc structure on V .

Definition 3.7. An orientation of a manifold or stack is an orientation

of its (virtual) tangent bundle. Recall that the tangent bundle to a

smooth stack is a graded vector bundle. We form a virtual bundle by

taking the alternating sum of its homogeneous components.

Definition 3.8. A KU -orientation of a map p : M → N is a trivi-

alization of the twisting τ
TM−p∗TN−rankp = τp − τrankp. Thus, to a

KU -oriented, proper map p : M → N one can define a pushforward

map

p∗ : K•+dim(M)−dim(N)(M)→ K•(N).

Example 3.9. If X is a closed oriented 2-manifold, the tangent space

of the stack MX at A (a connection on principal bundle P ) is the

complex

0→ Ω0
X(gP )

dA−→ Ω1
X(gP )

dA−→ Ω2
X(gP ),

where gP is the adjoint bundle associated to P . One forms the virtual

tangent bundle to MX as the index of an elliptic complex. The reduced

tangent bundle to MX is computed by the de Rham complex coupled

to the reduced adjoint bundle gP := gP − dimG.

Freed-Hopkins-Teleman describe a universal orientation that simul-

taneously orientsMX for not only closed 2-manifoldsX, but 2-manifolds

with boundary. In particular, the restriction maps t : MX → M∂X are

oriented. That is, there is a trivialization of the twisting τt − τrankt.

4. Pushforward Using Consistent Orientations

Let G be a compact Lie group. Let Z be a 1 or 2 dimensional

oriented manifold. Let MZ be the stack of flat connections of X. For

example, MS1 ' G/G. To a bordism X : Y0 → Y1 we consider the

correspondence of flat G-connections:
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MX

s

||

t

""
MY0 MY1

We would like to define a push-pull

ZX := t∗ ◦ s∗ : K•(MY0)→ K•(MY1).

But the pushforward, t∗ requires an orientation on (twisted) K-

theory. Freed-Hopkins-Teleman show that orientations can be consis-

tently chosen. Moreover, the functor Z respects gluing, i.e. is functorial

and defines a 2d-TFT. For instance, given

MX′◦X
r

zz

r′

$$
MX

s

||

t

$$

MX′

s′

zz

t′

""
MY0 MY1 MY2

We have that

(t′r′)∗ ◦ (sr)∗ = [t′∗ ◦ s′∗] ◦ [t∗ ◦ s∗]

Remark 4.1. Moreover, they show there is a well-defined map from

“consistent orientations” to levels on G.

Remark 4.2. Notice that MS1 ' G/G as stacks, and thus K•(MS1) '
K•G(G).

Theorem 4.3. For any compact Lie group G, once a consistent orien-

tation is chosen (and hence a level), the value of S1 on the correspond-

ing 2d TFT recovers the Frobenius ring

Kg+ȟ+α
G (G) ' V erα(G).
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